Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124351, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692109

RESUMO

Epidermal growth factor receptor (EGFR) plays a pivotal role in the initiation and progression of gliomas. In particular, in glioblastoma, EGFR amplification emerges as a catalyst for invasion, proliferation, and resistance to radiotherapy and chemotherapy. Current approaches are not capable of providing rapid diagnostic results of molecular pathology. In this study, we propose a terahertz spectroscopic approach for predicting the EGFR amplification status of gliomas for the first time. A machine learning model was constructed using the terahertz response of the measured glioma tissues, including the absorption coefficient, refractive index, and dielectric loss tangent. The novelty of our model is the integration of three classical base classifiers, i.e., support vector machine, random forest, and extreme gradient boosting. The ensemble learning method combines the advantages of various base classifiers, this model has more generalization ability. The effectiveness of the proposed method was validated by applying an individual test set. The optimal performance of the integrated algorithm was verified with an area under the curve (AUC) maximum of 85.8 %. This signifies a significant stride toward more effective and rapid diagnostic tools for guiding postoperative therapy in gliomas.


Assuntos
Receptores ErbB , Glioma , Espectroscopia Terahertz , Humanos , Glioma/genética , Glioma/patologia , Glioma/diagnóstico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Espectroscopia Terahertz/métodos , Aprendizado de Máquina , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Amplificação de Genes , Algoritmos , Máquina de Vetores de Suporte
2.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255831

RESUMO

Changes in the atmospheric CO2 concentration influence plant growth and development by affecting the morphological structure and photosynthetic performance. Despite evidence for the macro-effects of elevated CO2 concentrations on plant morphology and yield in tomato, the gene regulatory network and key genes related to cross-regulation have not been reported. To identify the hub genes and metabolic pathways involved in the response of tomato to CO2 enrichment, weighted gene co-expression network analysis was conducted using gene expression profiles obtained by RNA sequencing. The role of the photosynthesis-related gene Soly720 (Solyc01g007720) in CO2-enriched tomato plants was explored. Tomato plants responded to CO2 enrichment primarily through RNA-related pathways and the metabolism of amino acids, fatty acids, and carbohydrates. The hub genes in co-expression networks were associated with plant growth and development, including cellular components and photosynthesis. Compared to wild-type plants, transgenic plants overexpressing the Soly720 gene exhibited 13.4%, 5.5%, 8.9%, and 4.1% increases in plant height, stem diameter, leaf length, and leaf width, respectively, under high-CO2 conditions. The morphological improvements in transgenic plants were accompanied by enhancement of photosynthetic performance in terms of chlorophyll contents, photosynthetic characteristics, and key enzyme activities. This study elucidates the response network of tomato to CO2 enrichment and demonstrates the regulatory role of Soly720 in photosynthesis under high-CO2 conditions.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Dióxido de Carbono , Fotossíntese/genética , Clorofila , Plantas Geneticamente Modificadas/genética
3.
Int Immunopharmacol ; 121: 110468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37320870

RESUMO

BACKGROUND: High expression of amyloid-ß (Aß) in periodontal tissue could contribute to exacerbating the development of both periodontitis and Alzheimer's disease (AD). Porphyromonas gingivalis (P. gingivalis) as a periodontal pathogen expresses msRNAs, which can regulate gene transcription in host cells. OBJECTIVE: The aim of this study is to reveal the mechanism of msRNA P.G_45033, a high copy msRNA in P. gingivalis, inducing Aß expression in macrophages, and provide a new insight to explain the development of periodontitis, and also to explain the role of periodontal infection on AD. METHODS: The levels of glucose consumption, pyruvate and lactate productions in macrophages after transfection with msRNA P.G_45033 were detected. Miranda, TargetScan, and RNAhybrid databases were used to predict the target gene of msRNA P.G_45033, and GO analysis was conducted to describe the functions of the overlapping ones. RT2 glucose-metabolism PCR Array was used to verify the relationship between msRNA P.G_45033 and the expression of genes related to glucose metabolism. The levels of histone Kla were detected using western blotting. The levels of Aß in the macrophages and the culture medium were detected by immunofluorescence and ELISA, respectively. RESULTS: The levels of glucose consumption, pyruvate and lactate productions were increased after transfection of msRNA P.G_45033 in macrophages. GO analysis revealed that target genes were enriched in the metabolic process. RT2 glucose-metabolism PCR Array showed the expression of genes associated with glycolysis. The results of western blotting showed that the level of histone Kla was increased in macrophages. The results of immunofluorescence and ELISA showed that Aß levels in macrophages and culture medium were increased after transfection. CONCLUSION: The present study revealed that msRNA P.G_45033 can induce Aß production by enhancing glycolysis and histone Kla in macrophages.


Assuntos
Doença de Alzheimer , Periodontite , Humanos , Histonas/metabolismo , Porphyromonas gingivalis , Macrófagos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Periodontite/metabolismo , Doença de Alzheimer/metabolismo , Glicólise , Lactatos , Piruvatos , Glucose/metabolismo
4.
Front Cell Infect Microbiol ; 13: 1173899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325520

RESUMO

Background: Porphyromonas gingivalis (P. gingivalis), a major pathogen of periodontitis, can evade host immune defenses. Previously, we found that P. gingivalis W83 sialidase gene mutant strain (ΔPG0352) was more easily cleared by macrophages. The aims of this study were to investigate the effects of sialidase in P. gingivalis on the polarization, antigen presentation, and phagocytosis of infected macrophages and to clarify the mechanism of P. gingivalis immune evasion. Methods: Human monocytes U937 were differentiated to macrophages and infected with P. gingivalis W83, ΔPG0352, comΔPG0352, and Escherichia coli (E. coli). The phagocytosis of macrophages was observed by transmission electron microscopy and flow cytometry. ELISA or Griess reaction were used to examine the levels of interleukin-12 (IL-12), inducible nitric oxide synthase (iNOS) and interleukin-10 (IL-10), and the expressions of CD68, CD80 and CD206 were determined by flow cytometry. The expression of major histocompatibility complex-II (MHC-II) was detected by immunofluorescence. A rat periodontitis model was established to determine the M1 and M2 polarization of macrophages. Results: Compare with P. gingivalis W83, ΔPG0352 increased the levels of IL-12, iNOS, CD80, and MHC-II and inhibited the levels of IL-10 and CD206. Macrophages phagocytosed 75.4% of ΔPG0352 and 59.5% of P. gingivalis W83. In the rat periodontitis model, the levels of M1 and M2 macrophages in P. gingivalis W83 group were both higher than those in ΔPG0352 group, while the ratio of M1/M2 was higher in the ΔPG0352 group. Alveolar bone absorption was lower in ΔPG0352 group. Conclusion: Sialidase facilitates P. gingivalis immune evasion by reducing M1 polarization, antigen presentation, and phagocytosis of infected macrophages.


Assuntos
Interleucina-10 , Periodontite , Humanos , Ratos , Animais , Interleucina-10/metabolismo , Neuraminidase/metabolismo , Porphyromonas gingivalis/genética , Evasão da Resposta Imune , Apresentação de Antígeno , Escherichia coli/metabolismo , Macrófagos , Fagocitose , Interleucina-12/metabolismo , Periodontite/metabolismo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122629, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958244

RESUMO

Gliomas are the most common type of primary tumor in the central nervous system in adults. Isocitrate dehydrogenase (IDH) mutation status is an important molecular biomarker for adult diffuse gliomas. In this study, we were aiming to predict IDH mutation status based on terahertz time-domain spectroscopy technology. Ninety-two frozen sections of glioma tissue from nine patients were included, and terahertz spectroscopy data were obtained. Through Least Absolute Shrinkage and Selection Operator (LASSO), Principal component analysis (PCA), and Random forest (RF) algorithms, a predictive model for predicting IDH mutation status in gliomas was established based on the terahertz spectroscopy dataset with an AUC of 0.844. These results indicate that gliomas with different IDH mutation status have different terahertz spectral features, and the use of terahertz spectroscopy can establish a predictive model of IDH mutation status, providing a new way for glioma research.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Glioma/genética , Glioma/patologia , Mutação
6.
J Periodontal Res ; 56(6): 1007-1018, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34254681

RESUMO

Periodontitis is a chronic inflammatory condition that destroys the tooth-supporting tissues and eventually leads to tooth loss. As one of the most prevalent oral conditions, periodontitis endangers the oral health of 70% of people throughout the world. Periodontitis is also related to various systemic diseases, such as diabetes mellitus, atherosclerosis, and rheumatoid arthritis, which not only has a great impact on population health status and the quality of life but also increases the social burden. Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. Porphyromonas gingivalis can express various of virulence factors to overturn innate and adaptive immunities, which makes P. gingivalis survive and propagate in the host, destroy periodontal tissues, and have connection to systemic diseases. Porphyromonas gingivalis can invade into and survive in host tissues by destructing the gingival epithelial barrier, internalizing into the epithelial cells, and enhancing autophagy in epithelial cells. Deregulation of complement system, degradation of antibacterial peptides, and destruction of phagocyte functions facilitate the evasion of P. gingivalis. Porphyromonas gingivalis can also suppress adaptive immunity, which allows P. gingivalis to exist in the host tissues and cause the inflammatory response persistently. Here, we review studies devoted to understanding the strategies utilized by P. gingivalis to escape host immunity. Methods for impairing P. gingivalis immune evasion are also mentioned.


Assuntos
Evasão da Resposta Imune , Porphyromonas gingivalis , Composição de Bases , Humanos , Filogenia , Qualidade de Vida , RNA Ribossômico 16S , Análise de Sequência de DNA
7.
J Periodontol ; 92(2): 286-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32609876

RESUMO

BACKGROUND: Sialidase has an important role in the pathogenesis of periodontitis and Porphyromonas gingivalis is a sialidase-producing organism implicated in periodontitis development. The aim of this study was to evaluate the anti-virulence and anti-inflammatory properties of the sialidase inhibitor, 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA), in vitro and in vivo. METHODS: The effects of DANA on P. gingivalis sialidase and cell viability were determined, and the effects of DANA on P. gingivalis virulence were evaluated by assessment of growth curves, cell morphology, biofilm formation, fimbriae gene expression, and gingipains and lipopolysaccharide (LPS) activity. Anti-inflammatory effects of DANA on LPS-induced macrophages were assessed by measurement of tumor necrosis factor-alpha (TNF-α), interleukin (IL-1ß), inducible nitric oxide synthase (iNOS) secretions. The effect of DANA on P. gingivalis-induced periodontitis in rats was analyzed by radiography, stereoscopic microscopy, histopathology, and immunohistochemistry. RESULTS: Sialidase inhibition rate of 1mM DANA was 72.01%. Compared with untreated controls, treatment with DANA inhibited P. gingivalis growth and biofilm formation, and significantly decreased expression of the fimA, fimR, and fimS genes, as well as gingipains activity. DANA did not influence macrophage viability, but significantly inhibited TNF-α, IL-1ß, and iNOS production in LPS-stimulated macrophages. In the periodontitis rat model, DANA prevented alveolar bone absorption and inhibited TNF-α and IL-1ß production. CONCLUSION: DANA can reduce the growth, the biofilm formation and the virulence of P. gingivalis and exhibits anti-inflammatory effects, as well as effects against rat periodontitis, suggesting that DANA should be considered for development as a new adjunctive treatment for periodontitis.


Assuntos
Neuraminidase , Porphyromonas gingivalis , Animais , Anti-Inflamatórios/farmacologia , Cisteína Endopeptidases Gingipaínas , Lipopolissacarídeos , Ratos , Virulência
8.
Front Plant Sci ; 10: 702, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191593

RESUMO

Carbon dioxide (CO2) is very important for photosynthesis of green plants. CO2 concentration in the atmosphere is relatively stable, but it drops sharply after sunrise due to the tightness of the greenhouse and the absorption of CO2 by vegetable crops. Vegetables in greenhouses are chronically CO2 starved. To investigate the feasibility of using genetic engineering to improve the photosynthesis and yield of greenhouse cucumber in a low CO2 environment, five genes encoding glyoxylate carboligase (GCL), tartronic semialdehyde reductase (TSR), and glycolate dehydrogenase (GlcDH) in the glycolate catabolic pathway of Escherichia coli were partially or completely introduced into cucumber chloroplast. Both partial pathway by introducing GlcDH and full pathway expressing lines exhibited higher photosynthetic efficiency and biomass yield than wild-type (WT) controls in low CO2 environments. Expression of partial pathway by introducing GlcDH increased net photosynthesis by 14.9% and biomass yield by 44.9%, whereas the expression of the full pathway increased seed yield by 33.4% and biomass yield by 59.0%. Photosynthesis, fluorescence parameters, and enzymatic measurements confirmed that the introduction of glycolate catabolic pathway increased the activity of photosynthetic carbon assimilation-related enzymes and reduced the activity of photorespiration-related enzymes in cucumber, thereby promoting the operation of Calvin cycle and resulting in higher net photosynthetic rate even in low CO2 environments. This increase shows an improvement in the efficiency of the operation of the photosynthetic loop. However, the utilization of cucumber of low concentration CO2 was not alleviated. This study demonstrated the feasibility of introducing the pathway of exogenous glycolate catabolic pathway to improve the photosynthetic and bio-yield of cucumber in a low CO2 environment. These findings are of great significance for high photosynthetic efficiency breeding of greenhouse cucumber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...